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Abstract The vestibular system is vital for motor control

and spatial self-motion perception. Afferents from the

otolith organs and the semicircular canals converge with

optokinetic, somatosensory and motor-related signals in the

vestibular nuclei, which are reciprocally interconnected

with the vestibulocerebellar cortex and deep cerebellar

nuclei. Here, we review the properties of the many cell

types in the vestibular nuclei, as well as some fundamental

computations implemented within this brainstem–cerebel-

lar circuitry. These include the sensorimotor transforma-

tions for reflex generation, the neural computations for

inertial motion estimation, the distinction between active

and passive head movements, as well as the integration of

vestibular and proprioceptive information for body motion

estimation. A common theme in the solution to such

computational problems is the concept of internal models

and their neural implementation. Recent studies have shed

new insights into important organizational principles that

closely resemble those proposed for other sensorimotor

systems, where their neural basis has often been more

difficult to identify. As such, the vestibular system provides

an excellent model to explore common neural processing

strategies relevant both for reflexive and for goal-directed,

voluntary movement as well as perception.

Keywords Vestibular � Computation � Internal model �
Reference frame transformation � Eye movement �
Motor control � Sensorimotor � Reafference �
Motion estimation

Abbreviations

VOR Vestibulo-ocular reflex

RVOR Rotational vestibulo-ocular reflex

TVOR Translational vestibulo-ocular reflex

VN Vestibular nuclei

PH Prepositus hypoglossi

rFN Rostral fastigial deep cerebellar nuclei

NU Nodulus and ventral uvula regions of the caudal

cerebellar vermis

PH–BT ‘‘Tonic’’ and ‘‘burst-tonic’’ neurons in the PH

and adjacent medial VN

PVP ‘‘Position-vestibular-pause’’ VN cell type

EH ‘‘Eye-head’’ VN cell type

VO ‘‘Vestibular-only’’ VN cell type

FTN ‘‘Floccular-target-neuron’’ VN cell type

Introduction

Vision, hearing, smell, taste, and touch are the five senses

we commonly recognize as providing us with information

about our environment and our interaction with it. A less

well recognized but exquisitely sensitive set of sensors, the

vestibular organs in the inner ear, provide us with a vital

sixth sense: the sense of our motion and orientation in

space. In particular, three roughly orthogonal sets of

semicircular canals measure how the head rotates in three-

dimensions (3D). They are complemented by two otolith
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Dépt. de Physiologie, Université de Montréal,
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organs (the utricle and saccule) that measure linear accel-

erations including how the head translates and how it is

positioned relative to gravity. Even creatures with rela-

tively simple nervous systems (e.g., jellyfish, crustaceans)

have basic graviceptors that provide information about

orientation with respect to gravity that is critical for sur-

vival (Sandeman and Okajima 1972; Singla 1975).

The vestibular system plays a vital role in everyday life,

contributing to gaze stabilization (Barnes 1993; Raphan

and Cohen 2002; Angelaki 2004; Cullen and Roy 2004),

balance and postural control (Inglis et al. 1995; Allum and

Honegger 1998; Buchanan and Horak 2001; Horak

et al. 2001; Cathers et al. 2005; Maurer et al. 2006; Stapley

et al. 2006; Macpherson et al. 2007), spatial navigation

(Andersen 1997; Stackman and Taube 1997; Page and

Duffy 2003; Bremmer 2005; Day and Fitzpatrick 2005; Gu

et al. 2007; Taube 2007), spatial perception and memory

(Berthoz et al. 1995; Israel et al. 1997; Van Beuzekom

et al. 2001; Stackman et al. 2002; Brandt et al. 2005; Klier

et al. 2005; Li and Angelaki 2005; Klier and Angelaki

2008; Vingerhoets et al. 2008), voluntary movement

planning (DiZio and Lackner 2001; Mars et al. 2003;

Bresciani et al. 2005; Bockisch and Haslwanter 2007;

Raptis et al. 2007), and autonomic function (Yates 1992;

Balaban and Porter 1998; Yates and Bronstein 2005).

However, unlike most other senses, we are typically not

consciously aware of its contribution until uncertainty in

interpreting vestibular signals or conflicts with other sen-

sory cues give rise to illusions or motion sickness. Its

essential contribution is felt most acutely when vestibular

system function is compromised (e.g., due to vestibular

hair cell loss, vestibular neuritis, central and peripheral

lesions etc.) resulting in problems of disorientation, loss of

balance and postural control, loss of visual acuity, and

perceptual distortions (Curthoys et al. 1991; Halmagyi

et al. 1991; Curthoys and Halmagyi 1995; Karnath and

Dieterich 2006; Dieterich 2007). Being phylogenetically

old, the vestibular system can also provide unique insights

into the foundations upon which the computational strate-

gies used widely by the brain are organized.

Much of the processing of vestibular signals occurs in

the brainstem and cerebellum, where there is already strong

multimodal convergence with optokinetic and propriocep-

tive information (Waespe and Henn 1977, 1981; Boyle and

Pompeiano 1980, 1981; Boyle et al. 1985; Wilson et al.

1990; Buttner et al. 1991; Barmack and Shojaku 1995;

McCrea et al. 1999; Wylie and Frost 1999; Gdowski and

McCrea 2000; Barmack 2003). In addition, many of the

secondary neurons receiving direct primary afferent inputs

are also premotor cells that project directly to extraocular

motoneurons (McCrea et al. 1980, 1987; Scudder and

Fuchs 1992). Thus, beyond its obvious functional impor-

tance, the vestibular system also represents an ideal model

system for studying broad principles of sensory processing

ranging from multisensory integration for spatial motion

estimation to the sensorimotor transformations required for

motor control. While most recent reviews have concen-

trated on specific aspects of vestibular system function

(e.g., gaze stabilization: Barnes 1993; Raphan and Cohen

2002; Angelaki 2004; Cullen and Roy 2004; Angelaki and

Hess 2005; motor learning: du Lac et al. 1995; Raymond

et al. 1996; Blazquez et al. 2004; Boyden et al. 2004; pos-

tural control and locomotion: Bent et al. 2005; Deliagina

et al. 2008; spatial memory and visuo-spatial updating:

Klier and Angelaki 2008; Smith et al. 2009; cortical

multisensory integration: Andersen 1997; Fukushima 1997;

Angelaki et al. 2009), the goal here is to focus on early

(i.e., subcortical) vestibular processing (see also Angelaki

and Cullen 2008) and how it has contributed to our

understanding of neural computation.

Historically, computational approaches have always

been an integral part of studies of the vestibular system.

This trend was initiated early by pioneers who used control

systems theory to establish the basic sensorimotor trans-

formations by which vestibular signals are converted into

the motor commands that drive compensatory eye move-

ments (i.e., vestibulo-ocular reflexes, VOR) during head

motion. The success of this approach was facilitated by at

least four important factors: (1) vestibular stimuli can be

precisely controlled, thus ensuring that the ‘‘input’’ can be

easily quantified. This is also true for the ‘‘output’’: eye

movements can be very accurately measured (Robinson

1963); (2) all processing stages in the VOR, from primary

afferents to extraocular motor neurons, take place within

interconnected brainstem and cerebellar regions that are

easily accessible for electrode recordings; (3) The eye

represents a very simple motor plant both because it is a

single joint system and because it carries a negligible load;

(4) to a first approximation, the simplest processing in the

VOR pathways is linear. As a result, it was possible not

only to theoretically predict exactly which transformations

need to take place to convert vestibular signals into an

appropriate motor output, but also to identify experimen-

tally the neural correlates for these transformations.

Such studies continue to provide new insights for sen-

sorimotor control. However, more recently, research in

the field has increasingly focused on more complex and

often nonlinear or ‘‘context-dependent’’ computations. As

reviewed below, the vestibular system provides an excel-

lent model for identifying the neural correlates of con-

temporary principles of motor control (e.g., internal

models, reafference versus exafference, and reference

frame transformations) both because of its relative sim-

plicity (e.g., as compared to the circuits for limb control)

and because it is possible to precisely control and measure

both the inputs to the system and its neural or behavioral
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outputs. Most recent work in the vestibular system has

focussed on the following research questions: (1) the sen-

sorimotor transformations for reflex generation; (2) the

neural computations for inertial motion estimation; (3) the

computations to distinguish active from passive move-

ments; (4) the integration of vestibular and proprioceptive

signals for body motion estimation. Therefore, in this

review we will first discuss experimental and theoretical

evidence for internal models in the VOR and their neural

correlates in vestibular nuclei (VN) neurons that are sen-

sitive to eye movements. Then we will shift our attention to

another group of VN neurons without sensitivity to eye

movements and summarize their role in the computation of

inertial motion and in the distinction between actively-

versus passively-generated head movements. The last topic

we will review is how vestibular signals can be used to

estimate not only head but also body motion. Note that,

throughout this review, we concentrate on the subcortical

processing of vestibular information (for reviews about

cortical processing, see Fukushima 1997; Guldin and

Grusser 1998; Angelaki et al. 2009).

A common theme throughout is the concept of internal

models. In recent years, the term ‘‘internal model’’ has

been used in a variety of contexts to refer to anything from

an explicit neural representation of the dynamic properties

of a motor plant or sensor (Shidara et al. 1993; Shadmehr

and Mussa-Ivaldi 1994; Wolpert and Miall 1996; Kawato

1999; Green et al. 2007) to the representation of a solution

to a specific equation that needs to be solved (Merfeld et al.

1999; Angelaki et al. 2004; Zago et al. 2004, 2009; Green

et al. 2005). Here, we use the term in its broadest sense to

refer to any neural representation of a specific computation

that needs to be performed. The internal model concept is

emphasized here because, as reviewed below, this is per-

haps the only sensorimotor system for which neural cor-

relates of internal models have been explicitly identified.

Internal models for slow eye movements

in the vestibulo-ocular reflex

An essential role of the vestibular system is to ensure stable

viewing of the world by eliciting short-latency reflexive

eye movements to compensate for head movement, known

as the vestibulo-ocular reflexes (VORs). Early studies of

the vestibulo-ocular pathways have provided the ground-

work for understanding basic sensorimotor transformations

and have elucidated principles that have broad application

to all types of motor control. In particular, in any motor

system, the brain must compute motor commands from

signals that provide a representation of desired action. The

required computations often rely on internal representa-

tions of the dynamic properties of the motor plant to be

controlled. Such ‘‘internal models’’, which now constitute a

general theoretical concept in motor control, may be used

either to transform desired action into appropriate motor

commands (‘‘inverse model’’) or conversely, to predict the

consequences of motor commands on behavior (‘‘forward

model’’) (Shidara et al. 1993; Shadmehr and Mussa-Ivaldi

1994; Wolpert and Miall 1996; Kawato 1999). Some of the

earliest and most parsimonious evidence for such models

and their neural implementation comes from studies of

sensorimotor processing in the vestibulo-ocular pathways.

Next we describe the sensorimotor transformations in the

rotational vestibulo-ocular reflex (RVOR) and the concepts

that have emerged thus far.

The requirement for an inverse dynamic model

in the RVOR

The need for an inverse dynamic model in the RVOR

(Fig. 1a) was pioneered by David Robinson and his col-

leagues in the 1970s (Skavenski and Robinson 1973). Their

hypothesis, which has remained influential in motor con-

trol, was based on three basic observations: (1) afferents

from the semicircular canals encode head velocity over a

broad frequency range ([*0.03 Hz); (2) having little

inertia, the mechanics of the eyeball are dominated by

visco-elastic forces such that the relationship between eye

position and motoneural firing rates can be approximated

by a first-order low-pass filter with a bandwidth of *0.5–

0.6 Hz (Robinson 1964, 1965, 1970). As a result, if the

semicircular canal afferent signals were simply projected in

a feed-forward fashion directly to extraocular motoneu-

rons, eye velocity would be proportional to head velocity

only for frequencies above *0.5 Hz (Fig. 1b; blue curve

labeled ‘‘no inverse model’’). Yet, (3) it has been shown

experimentally that the compensatory RVOR bandwidth is

broad, extending to very low frequencies (Fig. 1b; red

curve labeled ‘‘with inverse model’’; Buettner et al. 1981;

Mizukoshi et al. 1983; Paige and Sargent 1991; Angelaki

et al. 1996). The difference between the red and blue

curves in Fig. 1b implies an additional processing stage

(‘‘inverse model’’ in Fig. 1a), whereby premotor circuits

compensate for the dynamics of the eyeball by ‘‘filtering’’

canal afferent signals with an inverse dynamic model of the

eye plant.

Robinson and colleagues also pioneered the first plau-

sible implementation of such an inverse dynamic model

that became well-known as the ‘‘parallel-pathway’’ model

(Fig. 1c; Skavenski and Robinson 1973; Robinson 1981):

They proposed that velocity signals were conveyed to

motoneurons (MN) both directly and indirectly via a

‘‘neural integrator’’ ($ in Fig. 1c). Together the two path-

ways compensate for the viscoelastic properties of the

eyeball and are thought to comprise an inverse dynamic
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model of a simplified (first-order) eye plant. In an alter-

native representation the integration was implemented in a

distributed fashion via positive feedback loops through a

forward model of the eye plant (Fig. 1d; Galiana and

Outerbridge 1984; Galiana 1991). These two descriptions

produce equivalent sensorimotor transformations and the

same VOR response characteristics (i.e., same blue to red

curve transformation in Fig. 1b; see Green et al. 2007,

supplemental material, for details).

Both implementations make an important prediction

regarding the properties of the neurons driving the RVOR:

premotor neurons should exist the firing rates of which are

closely correlated with eye position, reflecting the output of

the neural integrator in Fig. 1c or the output of the forward

model in Fig. 1d. Further expanded and more complex

models consistent with this notion also predicted the

existence of neurons which encode various combinations of

head velocity and eye movement-related signals (Cannon

et al. 1983; Galiana and Outerbridge 1984; Cannon and

Robinson 1985; Arnold and Robinson 1991; Cova and

Galiana 1996; Green and Galiana 1996; Hazel et al. 2002).

As described next, recordings from brainstem and cere-

bellar neurons have provided solid experimental evidence

consistent with these predictions.

Neural correlates for an inverse model

The first neurophysiological support for the existence of an

inverse eye plant model that includes a neural integrator

came from the discovery of ‘‘burst-tonic’’ and ‘‘tonic’’

neurons in the prepositus hypoglossi (PH) and adjacent

medial vestibular nuclei (VN) (collectively referred to here

as PH–BT cells). As shown in Fig. 2a, PH–BT neurons

have firing rates that correlate closely with eye position

during static fixation and low-frequency slow eye move-

ments (Baker and Berthoz 1975; Lopez-Barneo et al. 1982;

Escudero et al. 1992, 1996; McFarland and Fuchs 1992)

and they do not respond to head movements in the absence

of eye movement during fixation of a target that moves

with the head (i.e., during RVOR suppression; McFarland

and Fuchs 1992; Cullen et al. 1993; Green et al. 2007).

Consequently, PH–BT neurons were thought to encode the

eye position component of the inverse dynamic model

(e.g., E* in Fig. 1c, d).

Other populations of VN neurons that became known as

‘‘position-vestibular-pause’’ (PVP, Fig. 2b) and ‘‘eye-head’’

(EH, Fig. 2c) cells were shown to carry different combina-

tions of head velocity and eye position (and/or eye velocity)

signals (King et al. 1976; Lisberger and Miles 1980; Chubb

et al. 1984; Tomlinson and Robinson 1984; Scudder and

Fuchs 1992; Cullen et al. 1993; Cullen and McCrea 1993;

Lisberger et al. 1994c). Many PVP and EH neurons receive

monosynaptic canal inputs and make direct projections to

extraocular motoneurons, thus being identified as putative

interneurons in the shortest-latency VOR pathways (McCrea

et al. 1980, 1987; Scudder and Fuchs 1992). Depending on

whether PVP and EH cells prefer contralaterally or ipsilat-

erally directed eye movements, they can be further subdi-

vided into ‘‘eye-contra’’ and ‘‘eye-ipsi’’ cell types. Notably,

only the eye-contra (also widely known as ‘‘type I’’) PVP

and EH subgroups appear to make the bulk of direct pro-

jections to motoneurons and are thus considered the main

premotor VN neurons in the RVOR pathways (McCrea et al.

1980, 1987; Scudder and Fuchs 1992).

Fig. 1 The sensorimotor processing underlying eye movement

generation in the RVOR. a Angular velocity signals from the

semicircular canals are processed by an inverse dynamic model of the

eye plant before being conveyed onto extraocular motoneurons

(MNs). b Predicted frequency response characteristics of the RVOR

either with (red curve) or without (blue curve) processing by the

inverse model in a. Actual RVOR responses extend to lower

frequencies than predicted by the blue curve but closely follow the

red curve, demonstrating that sensory signals are processed by an

inverse eye plant model. c Parallel-pathway implementation of the

inverse dynamic model originally proposed by Skavenski and

Robinson (1973). The inverse model (gray shaded box) is constructed

by summing a weighted combination of angular velocity (top) and

integrated angular velocity signals (bottom). An internal estimate of

desired eye position (E*) is presumed to exist at the output of the

neural integrator ($). d Distributed feedback implementation of the

inverse model proposed by Galiana and colleagues (Galiana and

Outerbridge 1984; Galiana 1991). The required neural integration was

proposed to be implemented via positive feedback loops through a

forward model of the eye plant. Modified and reprinted with

permission from Green et al. 2007
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The PVP and EH cell types can be distinguished by the

way they combine head and eye movement signals. PVP

cells increase their activities for head rotation in one

direction during RVOR suppression (i.e., stabilization of a

target that moves with the head so that the eyes do not

move) and for eye rotation in the opposite direction during

head-stationary smooth target tracking (smooth pursuit); as

a result, response modulation is largest during stable-gaze

RVOR when the eyes move in the opposite direction to

head motion as animals fixate a world-fixed target

(Fig. 2b). In contrast, the preferences of EH cells for head

rotation during RVOR suppression and for eye rotation

during smooth pursuit are in the same direction, such that

response modulation is reduced during stable-gaze RVOR

(Fig. 2c; Scudder and Fuchs 1992). As EH cells typically

exhibit larger responses during pursuit as compared to

RVOR suppression, their modulation during stable gaze

RVOR is often dominated by eye-movement-related

activity (Scudder and Fuchs 1992; Cullen et al. 1993;

Lisberger et al. 1994c). As a result, some EH cells with

large pursuit responses show an apparent reversal in pre-

ferred direction during RVOR suppression (when the eyes

do not move) as compared to RVOR stable gaze conditions

(when compensatory eye movements are elicited; e.g.,

Fig. 2c). This ‘‘oppositely-directed’’ activity is presumed

responsible for canceling out the strong PVP modulation

(e.g., Fig. 2b) at the motoneuron level during RVOR sup-

pression (Scudder and Fuchs 1992; Cullen et al. 1993;

Cullen and McCrea 1993). Thus, in conjunction with PH–

BT cells, PVP and EH cells are generally presumed to

provide motoneurons with the correct combination of

velocity and position-like signals to compensate for the

plant dynamics during slow eye movements.

Learning and viewing context-related changes in VOR

amplitude are often accompanied by significant changes in

the depth of modulation of EH neurons. These cells are

thus thought to play a particularly important role in the

online contextual modulation of the VOR with viewing

location (McConville et al. 1996; Chen-Huang and

McCrea 1999a, b; Meng and Angelaki 2006) as well as in

long-term adaptive reflex changes brought about by altered

visual-vestibular mismatch stimuli (Lisberger et al. 1994b).

A subset of EH (but not PVP) cells, known as floccular-

target neurons (FTNs), receive direct inhibitory projections

(a) (c) EH CellPH-BT Cell

Saccades and fixation

Smooth Pursuit

VOR Suppression

Smooth Pursuit

VOR Suppression

Stable Gaze

Head

Eye
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Head
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Fig. 2 Premotor eye-movement-sensitive cell types implicated in the

brainstem RVOR pathways. a Burst-tonic (PH–BT) neuron recorded

in the PH. Modified and reprinted with permission from McFarland

and Fuchs (1992). b Eye-contralateral (Type I) position-vestibular-

pause (PVP) neuron recorded in the rostral medial VN. c Eye-

contralateral eye-head (EH) neuron recorded in the rostral medial VN.

Modified and reprinted with permission from Scudder and Fuchs

(1992)
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from the cerebellar flocculus and exhibit properties

appropriate to drive changes in reflex gain during motor

learning (Lisberger et al. 1994b, c). FTNs and their con-

nectivity with the cerebellar flocculus/ventral paraflocculus

have provided an excellent model system for studying the

neural, cellular, and genetic basis of a simple form of motor

learning (see reviews by Lisberger 1988; du Lac et al.

1995; Raymond et al. 1996; Blazquez et al. 2004; Boyden

et al. 2004).

This brief summary emphasizes a widely accepted

notion that the several types of eye-movement-sensitive

premotor neurons collectively contribute to computing an

inverse dynamic model of the eye plant. The distributed

nature of this inverse model is supported both by the high

level of neuronal interconnectivity and by eye-movement

deficits consistent with a loss of integration after lesions to

many brainstem and cerebellar areas (Zee et al. 1981;

Cannon and Robinson 1987; Godaux et al. 1993; Mettens

et al. 1994; Kaneko 1997, 1999). Recently, aspects of this

theoretical construct have been reconsidered and extended,

leading to new insights into the organization of the system

that reveal close parallels with other motor systems (e.g.,

limb control). These insights have been brought about by

considering another reflex type, the translational vestibulo-

ocular reflex (TVOR), that generates compensatory eye

movements during translation (e.g., during locomotion).

Next we describe how differences between the RVOR and

TVOR have helped probe the concepts of internal models

and their neural implementation.

Insights from the translational vestibulo-ocular reflex

The TVOR differs from the RVOR in many respects

(reviewed in Angelaki 2004; Angelaki and Hess 2005),

including the basic dynamic transformations required to

convert sensory signals to motor commands. In particular,

unlike other types of eye movements including saccades,

smooth target tracking, and the RVOR that are all driven

by velocity-like signals, the sensory drive for the TVOR

provided by otolith afferents is encoded in terms of linear

acceleration (Fernandez and Goldberg 1976a, b). Behav-

iorally, the TVOR also has a much narrower dynamic range

and is robust only at frequencies above the eye plant

bandwidth ([*0.5–1 Hz; Paige and Tomko 1991a; Tel-

ford et al. 1997; Angelaki 1998).

These differences both at sensory and at motor levels

imply that ultimately different sensorimotor processing is

required for the TVOR versus the RVOR. But to what

extent are common computational strategies employed?

Recall that the broad RVOR bandwidth has been used as

the main argument for the existence of an inverse dynamic

model that compensates for the eye plant dynamics

(Fig. 1a, b; Skavenski and Robinson 1973). However,

using a similar logic, no such compensation is needed for

the TVOR: the high-pass dynamics of the TVOR (e.g.,

similar to those in Fig. 1b, blue curve ‘‘no internal model’’)

would either argue against an inverse plant model or at best

suggest that such processing may be unnecessary (Green

and Galiana 1998; Musallam and Tomlinson 1999;

Angelaki et al. 2001). In principle, only an integrator is

necessary for the TVOR to convert linear acceleration into

the velocity-like signals required to drive the reflex at

higher frequencies. Thus, one way that otolith signals could

be processed is by only utilizing the integrator pathway in

Robinson’s parallel pathway diagram (Fig. 3a; Green and

Galiana 1998; Musallam and Tomlinson 1999; Angelaki

et al. 2001).

While the scheme shown in Fig. 3a represents the most

efficient strategy for processing otolith signals in the

TVOR, it nonetheless has a disadvantage. As a common

inverse model would not be shared by all sensorimotor

systems that drive the same effector (the eyeball in this

case), the way that premotor neurons encode information

about eye movement would depend on the sensory stimulus

(see Green and Galiana 1998; Green et al. 2007 for

details). Alternatively, a common inverse model might be

shared by multiple sensorimotor systems to ensure that at

least some premotor neurons always encode a consistent

eye movement representation even when the dynamics of

both the motor output and the sensory input differ. In this

case, however, the processing in the TVOR would be less

efficient; otolith linear acceleration signals would need to

be preprocessed first (i.e., upstream of the inverse plant

model; ‘‘prefiltering’’ stage; Fig. 3b; Paige and Tomko

1991a, b; Telford et al. 1997) both to make them com-

patible with the velocity-like eye movement drive from

other sensory sources as well as to provide the high-pass

properties that are observed behaviorally in the TVOR.

What strategy does the brain use? One that optimizes the

use of existing circuitry to perform multiple distinct sen-

sorimotor transformations (Fig. 3a) or one that relies on a

common internal model, despite the need for additional

processing, with the goal of maintaining consistent internal

state estimates (Fig. 3b)?

Single unit recordings from PH–BT, PVP, and EH cells

during both rotation and translation have revealed distinc-

tions in the way the particular neural subpopulations

encode rotational versus translational signals (Angelaki

et al. 2001; Meng et al. 2005; Meng and Angelaki 2006;

Green et al. 2007). Nonetheless strong support has been

provided for the prefiltering stage in Fig. 3b (Green et al.

2007). Both ‘‘eye-contra’’ PVP and PH–BT cells (but not

EH and ‘‘eye-ipsi’’ PVP cells) exhibit modulations that lag

eye velocity (i.e., are more closely in phase with eye

position) at 0.5 Hz, suggesting that a second temporal

integration of otolith signals must take place centrally in

202 Exp Brain Res (2010) 200:197–222
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the TVOR pathways (i.e., compatible with a prefiltering

stage). In addition, unlike all other cell types, PH–BT cells

exhibited response dynamics relative to eye movement that

were identical during rotation and translation. Thus, canal

and otolith signals appear to be processed by a common

inverse model to create a consistent estimate of the motor

output at the level of PH–BT neurons (Green et al. 2007).

Furthermore, as outlined next, a direct comparison of

neural responses during rotation and translation with those

of extraocular motor neurons has provided new insights

regarding the neural basis of the inverse dynamic model

and the role of PH–BT cells.

Neural correlates for an inverse model reconsidered

Recall that the prevailing theoretical conceptualizations

emphasized the notion that PH–BT neurons encode an

internal estimate of eye position, a signal representing the

output of the neural integrator (E* in Fig. 1c) or of a for-

ward eye plant model (E* in Fig. 1d). Yet, when the crit-

ical experiment to test such a presumption was performed,

it was shown that PH–BT cell dynamics are identical to

those of extraocular motoneurons (Fig. 4a; Green et al.

2007). Thus, PH–BT cells are not the output of the neural

integrator portion of the inverse model, as previously

assumed. Instead, they appear to represent the output of the

inverse model itself, encoding an efference copy of the

motor command signal (Green et al. 2007). In retrospect,

this finding is not surprising. Motoneurons are only

involved in generating the movement and the control of eye

movements does not rely on on-line feedback from muscle

spindles (Keller and Robinson 1971; Guthrie et al. 1983).

Thus, PH–BT cells must play the important role of

distributing an efference copy of the motor command

(output of the inverse dynamic model) to different pre-

motor and sensory areas, where it can be used for multiple

purposes, including updating the brain about ongoing eye

movements (McCrea and Baker 1985; Belknap and

McCrea 1988; Green et al. 2007).

In particular, the requirement for dedicated neuronal

populations that carry an efference copy of motor com-

mand signals is found in contemporary theories of limb

control, which suggest that sensorimotor transformations

may rely on complementary forward and inverse models of

the sensors and motor actuators (e.g., Wolpert and Kawato

1998). Accordingly, on-going eye movement can be esti-

mated by feeding the efference copy signal of the motor

command (i.e., the output of the inverse model) through a

forward model. The output of the forward model would

then predict the estimated eye movement consequences of

this motor command (Fig. 4b). Such a signal can be used to

update the brain about ongoing eye movement and to

correct online for any errors between predicted and desired

action by subsequently refining the motor command.

A forward model in the cerebellum?

If PH–BT neurons in the PH and VN represent the output

of the inverse dynamic model for slow eye movements,

where might the proposed forward model be? Green et al.

(2007) (also see Glasauer 2003) suggested the cerebellum

as one likely site for the implementation of the forward

model. Indeed, the cerebellum has been implicated in the

implementation of forward and inverse dynamic models

both for limb control (Ito 1970; Miall et al. 1993; Wolpert

and Kawato 1998; Kawato et al. 2003) and for eye

Fig. 3 Schematic illustration of two hypotheses for the dynamic

processing in the TVOR. a Distributed dynamic processing hypoth-

esis, whereby the internal model is not fully implemented in the

TVOR pathways. Otolith signals are processed by only the neural

integrator portion (dashed box) of the inverse model that converts

linear acceleration signals into velocity. In this scheme, the dynamic

characteristics of the eye plant remain uncompensated and the plant

dynamics contribute to shaping the reflex at higher frequencies, where

the TVOR exhibits a robust response. b Common internal model

hypothesis. Otolith signals, encoding linear acceleration, are pre-

sumed to be ‘‘prefiltered’’ before converging onto a common inverse

model used to convert desired eye velocity signals into appropriate

motor commands. Modified and reprinted with permission from

Green et al (2007)
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movements (Shidara et al. 1993; Gomi et al. 1998; Gla-

sauer 2003; Ghasia et al. 2008; Lisberger 2009). In support

of this notion, BT neurons in PH/VN and paramedian tract

are known to project to the flocculus (Langer et al. 1985b;

McCrea and Baker 1985; Belknap and McCrea 1988;

Buttner-Ennever et al. 1989; Nakamagoe et al. 2000).

Feedback from a presumed forward model in the flocculus

could be used to update the brainstem motor command

signal via Purkinje cell projections onto FTNs (i.e., EH-

type cells) in the VN (Langer et al. 1985a; Lisberger et al.

1994c).

Support for such a proposed role for the cerebellar

flocculus and its projections onto EH cells in computing a

forward model comes from a recent study which examined

how various cell populations encode 3D ocular kinematics

during smooth pursuit eye movements (Ghasia et al. 2008).

In particular, visually-guided eye movements in 3D are

subject to kinematic constraints such that eye positions

always lie in what is known as Listing’s plane. To achieve

this, the axis of eye rotation during movements initiated

from eccentric positions must tilt out of this plane in the

same direction as gaze, by approximately half as much

(half-angle rule) (Tweed and Vilis 1990). As extraocular

motoneurons do not encode the half-angle rule (Ghasia and

Angelaki 2005) this property appears to be generated by

the mechanical characteristics of the eyeball (Miller 1989;

Demer et al. 2000; Kono et al. 2002; Klier et al. 2006). As

a result, there is a clear distinction between the motor

command and the resulting eye movement, a difference

that provides a unique opportunity to investigate the neural

substrates for inverse versus forward models. Indeed, PH–

BT cells, like motoneurons, showed little systematic eye

position dependence consistent with the half-angle rule

(Ghasia et al. 2008), providing further support for the

Fig. 4 Evidence that tonic and burst-tonic cells in the PH and

adjacent medial VN (PH–BT cells) represent the output of a common

inverse model. a Comparison of the dynamic characteristics of PH–

BT cells with those of extraocular motoneurons. Neural response gain

(left) and phase (right) relative to eye position of PH–BT cells

(triangles, solid lines) and motoneurons in the abducens (circles,

dashed lines) and oculomotor (squares, dotted lines) nuclei are

plotted during rotation (red curves) and translation (blue curves) as a

function of frequency. Phases are expressed relative to the preferred

eye movement direction of the cell. b Schematic illustration of the

dynamic processing for eye movement generation in which PH–BT

cells represent the output of the inverse dynamic model. Although the

PH–BT cell population is illustrated outside the box labeled ‘‘inverse

model’’ for simplicity, these cells can also be considered to contribute

as an integral part of the model through feedback interconnections

(dotted line) with other premotor neural populations including PVP

and EH neurons. All three cell types project to the motoneuron

population, MN. PH–BT cells are postulated to distribute an estimate

of the motor command signal to other brain areas (e.g., the cerebellar

flocculus) that potentially implement a forward model of the eye plant

(or of the gaze system in general). The estimated motor response at

the output of such a forward model can be compared with the desired

eye movement to help refine the motor command signal. Modified and

replotted with permission from Green et al. 2007

204 Exp Brain Res (2010) 200:197–222

123



www.manaraa.com

proposal that PH–BT neurons represent the output of the

inverse model.

Combined, the studies of Green et al. (2007) and Ghasia

et al. (2008) thus show that the firing rates of PH–BT

neurons are both dynamically (i.e., in terms of their fre-

quency response characteristics; Fig. 4a) and kinematically

(i.e., in terms of their firing properties during 3D eye

movements) identical to the firing rates of extraocular

motoneurons. In contrast to motoneurons and PH–BT cells,

EH neurons showed a systematic dependency on eye

position that might be consistent with the half-angle rule,

suggesting that they carry signals more closely related to

the actual executed eye velocity (Ghasia et al. 2008). As

many EH cells receive projections from the cerebellar

flocculus, such signals could be conveyed from a forward

model in the cerebellum. Yet, there are reasons to suggest

that this may not simply be a forward model of the eye

plant. In particular, many Purkinje cells in the cerebellar

flocculus do not simply encode eye velocity but rather

seem to combine eye and head velocity signals to compute

an estimate of gaze velocity (Lisberger and Fuchs 1978;

Miles et al. 1980; Stone and Lisberger 1990; Lisberger

et al. 1994a). This has led to the speculation that if the

cerebellar flocculus computes a forward model it may in

fact be a model of the combined eye-head gaze system

(Lisberger 2009). At present, no firm conclusion has been

reached regarding the nature of and neural correlates for

such a hypothesized forward model.

These recent advances emphasize a conceptual organi-

zation for the vestibulo-ocular system that closely parallels

those proposed for limb control. Interpretations of experi-

mental data in this context (e.g., Green et al. 2007; Chen-

Harris et al. 2008; Ethier et al. 2008; Ghasia et al. 2008;

Lisberger 2009) are thus likely to shed valuable new

insights into neural strategies for sensorimotor processing,

motor control, and learning that are relevant for all types of

reflexive and goal-directed voluntary movement. Yet,

while the vestibular system contribution to gaze stabiliza-

tion is arguably one of its most well-studied functions, the

vestibular sensors also provide important sensory cues for

spatial orientation and self-motion perception. Next, we

describe how signals from the two vestibular sensors

interact and we focus on another neuron type, known as

‘‘vestibular-only’’ (VO) cells, which is distinct from the

cell populations described above in that they do not carry

signals related to eye movement.

Computations for inertial motion estimation

in the brainstem and cerebellum

Early studies showed that VO cells in the VN and cere-

bellum also behave as a distributed neural integrator

(Cohen et al. 1977, 1981; Raphan et al. 1977, 1979; Wa-

espe and Henn 1977; Katz et al. 1991; Reisine and Raphan

1992; Yokota et al. 1992; Wearne et al. 1997a, 1998). The

original function ascribed to this integrative network,

which became popularly known as the ‘‘velocity storage’’

integrator, was to compensate for the high-pass dynamic

properties of the semicircular canals, with the goal of

improving or storing central estimates of angular velocity

(Raphan et al. 1977, 1979; Robinson 1977). Thus, this

network too appeared to be computing an inverse model,

but this time not of the dynamics of the eye but instead of

the semicircular canals. However, subsequent experiments

revealed that this so-called ‘‘velocity storage’’ network also

exhibits complex spatial properties that depend on head

orientation with respect to gravity (Raphan et al. 1981;

Harris 1987; Raphan and Cohen 1988; Dai et al. 1991;

Merfeld et al. 1993b; Angelaki and Hess 1994, 1995;

Wearne et al. 1997b, 1998). These observations pointed to

a broader role for this VO-cell network in integrating

multisensory signals (i.e., optokinetic, vestibular, and

somatosensory) to compute internal estimates of inertial

self-motion (Merfeld et al. 1993a; Angelaki and Hess

1994, 1995; Merfeld 1995; Glasauer and Merfeld 1997;

Hess and Angelaki 1997; Zupan et al. 2002; Green and

Angelaki 2003, 2004). In this regard, the nomenclature

used to describe VO neurons is misleading, as many

respond not only to vestibular stimuli but also to full-field

optokinetic and/or proprioceptive stimulation (Waespe and

Henn 1977, 1981; Boyle and Pompeiano 1980, 1981; Boyle

et al. 1985; Kasper et al. 1988; Wilson et al. 1990; Buttner

et al. 1991; Barmack and Shojaku 1995; McCrea et al.

1999; Wylie and Frost 1999; Gdowski and McCrea 2000;

Barmack 2003; Bryan and Angelaki 2009).

Among the most important computations implemented

by the VO-neuron-network is the resolution of an ambi-

guity in interpreting sensory otolith signals. Below we

summarize evidence suggesting that VO cells within the

VN, rostral fastigial nucleus of the cerebellum (rFN)

and nodulus/uvula of the caudal cerebellar vermis (NU,

lobules IX and X) implement an internal model of the

solution to a fundamental physical law necessary to resolve

this sensory ambiguity. We start with a brief description of

the problem.

The tilt/translation ambiguity

The ambiguity arises because: (1) we move within a

gravitational environment; (2) the otolith organs, like any

other linear accelerometer, transduce both inertial (trans-

lational, t) and gravitational (g) accelerations, thereby

providing information about net acceleration (a = t - g;

Einstein’s equivalence principle; Einstein 1908). Thus,

changes in the firing rate of otolith afferents are ambiguous
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in terms of the type of motion they encode: they could

reflect either translation or a head reorientation relative to

gravity (i.e., tilt) or combinations of these motions.

A key difference between translation and tilt is that as

the head is reoriented relative to gravity it is also simul-

taneously rotated. Thus, tilts typically activate rotational

sensors (e.g., the canals). In contrast, the semicircular

canals are not stimulated during pure translation. In theory,

therefore, the ambiguity can be resolved by combining

otolith signals with estimates of head rotation (e.g., from

semicircular canal, visual and/or proprioceptive cues). In

recent years, a number of theoretical and behavioral studies

have illustrated that rotational cues can be used to explic-

itly separate the net gravito-inertial acceleration signal

sensed by the otoliths into central estimates of gravity and

translational acceleration (Merfeld et al. 1993a, 1999;

Merfeld 1995; Merfeld and Young 1995; Glasauer and

Merfeld 1997; Angelaki et al. 1999; Bos and Bles 2002;

Merfeld and Zupan 2002; Zupan et al. 2002; Green and

Angelaki 2003, 2004; MacNeilage et al. 2007).

Theoretically, the way that rotational cues should be

combined with net acceleration signals to resolve the sen-

sory ambiguity is described by the following equation:

t ¼ a�
Z

x� g dt ð1Þ

Equation 1 states that to estimate translation, t, the otolith

net acceleration signal, a, must be combined with an

independent estimate of head tilt (g = -$x9g dt) com-

puted from an extra-otolith rotation estimate, x. The $x9g

term (where $ is an integration and 9 is a vector cross-

product) describes the computations that take into account

an initial estimate of head orientation (initial g state from

static otolith and/or proprioceptive cues) to transform a

head-referenced angular velocity signal, x (e.g., from the

canals) into an updated estimate of dynamic tilt relative to

gravity, g.

Experimental support for a role for rotational signals in

estimating translation (as predicted by Eq. 1) was provided

in a series of elegant human and monkey behavioral

studies. Merfeld and colleagues (Merfeld et al. 1999, 2001;

Zupan et al. 2000) reasoned that if canal signals are inac-

curate they would give rise to an inaccurate estimate of

gravity (i.e., tilt) and consequently an inaccurate estimate

of translation (i.e., an incorrect central estimate of g =

-$x9g in Eq. 1 results in an incorrect estimate of t). They

then took advantage of the fact that the canals provide an

inaccurate estimate of angular velocity at low frequencies

to reveal a systematic pattern of ‘‘erroneous’’ ocular

responses in humans consistent with the hypothesis that

canal signals had contributed to an internal, albeit incor-

rect, estimate of translational motion (Merfeld et al. 1999;

Zupan et al. 2000).

At about the same time, Angelaki and colleagues

(Angelaki et al. 1999; Green and Angelaki 2003) used

combinations of tilt and translation stimuli (e.g., Fig. 5a,

top) at higher frequencies ([0.1 Hz), where canal estimates

of angular velocity are accurate, to demonstrate that signals

from the semicircular canals directly contribute to the

generation of the TVOR in monkeys. Similar types of

stimuli have subsequently been used to show that canal

signals contribute to tilt/translation discrimination in

human perceptual responses (Merfeld et al. 2005a, b) as

well as to tilt perception in monkeys (Lewis et al. 2008).

An exception to this finding is the human TVOR where tilts

and translations are not ideally distinguished. Instead the

human TVOR appears to rely predominantly on an alter-

native, but non-ideal, ‘‘filtering’’ strategy in which higher-

frequency otolith stimuli are interpreted as translations

while low-frequency stimuli are interpreted as tilts (Mayne

1974; Paige and Tomko 1991a; Merfeld et al. 2005a, b).

More generally, a combination of ‘‘filtering’’ and ‘‘otolith-

canal’’ convergence strategies are likely to be used to

varying extents. In addition, contemporary theories based

on Bayesian inference suggest that experimental findings

consistent with the predictions of both strategies may be

obtained using a zero inertial acceleration prior (i.e., it is

more likely that we are stationary rather than moving;

Laurens and Droulez 2007; MacNeilage et al. 2007; for a

review, see Angelaki et al. 2010).

Importantly, however, under conditions where tilts and

translations are appropriately distinguished behavioral

studies have confirmed that (1) semicircular canal signals

play a critical role in the estimation of translational self-

motion and (2) the dynamic processing of canal-derived

rotational signals is consistent with the integration implied

by Eq. 1 (Green and Angelaki 2003). As will be shown

next, the otolith-canal convergence necessary to implement

Eq. 1 takes place on VO cells within brainstem–cerebellar

circuits that involve the VN, rFN, and NU (Angelaki et al.

2004; Green et al. 2005; Shaikh et al. 2005; Yakusheva

et al. 2007).

Neural correlates of the internal model that resolves

the tilt/translation ambiguity

To investigate how and where neurons combine canal and

otolith signals to distinguish tilts and translations, neural

responses were recorded during four stimuli: translation,

roll tilt, and simultaneous combinations of the two

motions in which translational and gravitational acceler-

ations either summed (Tilt ? Translation stimulus) or

canceled one another out (Tilt - Translation stimulus;

Fig. 5a, top). Unlike the responses of otolith afferents

which encode the net linear acceleration (Fig. 5a), many

neurons in the VN and rFN modulated strongly during
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translation, and only marginally during tilt, as illustrated

with the example VN cell in Fig. 5b. Note, in particular,

that this VN neuron responded during Tilt–Translation

motion, even though the dynamic linear acceleration

stimulus to the otoliths was close to zero (see the lack of

modulation of the otolith afferent, Fig. 5a). Thus, the

robust response of central neurons to Tilt–Translation

motion reveals nicely the underlying semicircular canal

contribution to constructing an estimate of translation

(Angelaki et al. 2004; Green et al. 2005; Shaikh et al.

2005; Yakusheva et al. 2007). Indeed, neural responses

during Tilt–Translation disappeared after the semicircular

canals were inactivated by plugging (Shaikh et al. 2005;

Yakusheva et al. 2007).

The extent to which individual neurons in the VN, rFN,

and NU reflected a neural coding of translation versus net

Fig. 5 Evidence for a neural

resolution to the tilt/translation

ambiguity. Responses of an

otolith afferent (a) and a mainly

translation-coding rostral VN

neuron (b) recorded during four

tilt/translation stimulus

combinations in darkness.

Modified and replotted with

permission from Angelaki et al.

2004. c Summary of how well

brainstem and cerebellar

neurons discriminate tilts and

translations. The plot illustrates

Z-transformed partial

correlation coefficients for the

fits of individual cell responses

with a translation-coding model

and a net acceleration (afferent-

like) model. NU Purkinje cells

(blue filled circles), rFN cells

(orange up triangles), VN

neurons (green down triangles)

are compared with primary

otolith afferents (red filled
squares). Dashed lines divide

the plots into an upper-left

region where cell responses

were significantly better fit

(p \ 0.01) by the translation-

coding model and a lower-right

region where neurons were

significantly better fit by the net

acceleration model. The

intermediate area represents a

region where cells were not

significantly better fit by either

model. Notice that unlike the

distributed representation of VN

and rFN cells, most NU cells are

best fit by a translation-coding

model (i.e., blue circles in upper

left region). Modified and

replotted with permission from

Yakusheva et al. (2007) and

Angelaki and Cullen (2008)
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acceleration is summarized in Fig. 5c, which compares the

normalized correlation coefficients of the fits of each model

to cell responses to the stimuli in Fig. 5a,b. Data points

falling in the upper left quadrant represent neurons that

were significantly more translation-coding. Cells in the

lower right quadrant were significantly more net accelera-

tion-coding. Whereas VN and rFN neurons spanned the

whole range from translation to net acceleration coding, all

NU Purkinje cell responses correlated best with translation

(i.e., the output of an internal model of the solution to

Eq. 1). Perhaps most importantly, quantitative analyses

showed that for most neurons (including those that did not

explicitly encode translation) the otolith and canal-derived

signals converging onto each cell (terms a and -$x9g,

respectively) were spatially and temporally aligned, as

necessary to implement an internal model of the solution to

Eq. 1 (Angelaki et al. 2004; Green et al. 2005; Shaikh

et al. 2005; Yakusheva et al. 2007).

Thus, in summary, brainstem and cerebellar neurons

were shown to carry the appropriate signals to distin-

guish translation in the horizontal plane from small tilts

from an upright orientation and to explicitly construct a

central representation of translation. Under these condi-

tions (i.e., translation and small tilts from upright), oto-

lith signals are combined with both spatially matched

and dynamically transformed (i.e., temporally integrated)

canal signals to resolve the tilt/translation ambiguity

(Green et al. 2005). However, the head is not always

upright. As described next, the specific way that otolith

and canal signals must combine to resolve the sensory

ambiguity problem in 3D depends critically on head

orientation.

Evidence for a reference frame transformation

of rotational signals

Let us return to Eq. 1, showing that the component of

acceleration due to head reorientation relative to gravity

must first be computed using rotational signals (i.e., the

term -$x9g). As emphasized in Fig. 6a, as the canals are

fixed in the head whereas the gravity vector is fixed in

space, different sets of canals signal a reorientation relative

to gravity when the head is upright (i.e., vertical canals), as

compared to when the head is pitched forward or backward

(i.e., horizontal canals). Thus, in general, the way that

otolith and canal signals must combine to distinguish tilts

and translations is head-orientation-dependent (Green and

Angelaki 2004, 2007; Green et al. 2005). This is exactly

what is implied by the vector cross-product g = -$x9g

term in Eq. 1; it implies that the brain must combine head-

centered rotational information, x, nonlinearly (multipli-

catively) with a current estimate of head orientation, g, to

compute a new updated tilt estimate.

For small rotations from different static head orienta-

tions, this computation can be thought of as approximately

equivalent to transforming a head-centered representation

of angular velocity (e.g., from the canals) into a world-

centered representation of the earth-horizontal rotation

component (Green and Angelaki 2004, 2007; Green et al.

2005; Yakusheva et al. 2007). Specifically, as illustrated

schematically in Fig. 6b, the rotation component about the

earth-horizontal axis, xEH, corresponds to the component

of rotation that signals a change in head orientation with

respect to gravity. Integration of this signal yields an

estimate of dynamic tilt (gdyn & $xEH), which can then be

combined with otolith signals to extract an estimate of

translation, t. Accordingly, an important theoretical pre-

diction for cells that encode the output of an internal model

of Eq. 1 (i.e., the NU cells that encode translation) is that

they should combine otolith signals with canal signals that

have been transformed into a spatially-referenced signal

(i.e., an estimate of xEH). At present, this prediction indeed

appears to hold for the simple spike responses of NU

Purkinje cells which exhibit a robust canal-derived xEH

signal during Tilt–Translation motion from an upright

orientation (Fig. 6c) but do not respond to rotations about

an earth-vertical axis (Fig. 6d; Yakusheva et al. 2007).

That the responses of these neurons reflect the full vector

cross-product computation of Eq. (1) required to estimate

xEH and compute translation in 3D remains to be explicitly

shown by examining their responses across multiple head

orientations.

The types of context-dependent (in this case head-

orientation-dependent) computations that are required to

estimate inertial motion are similar to those required for

many other sensorimotor problems, such as planning limb

movements where the way muscles are activated for the

same movement direction depends on starting limb posture

(Buneo et al. 1997; Scott and Kalaska 1997; Scott et al.

1997; Sergio and Kalaska 2003; Buneo and Andersen 2006;

Ajemian et al. 2008). A better understanding of how such

computations take place within the VO cell network and the

role of the cerebellum in this process is thus likely to be of

broad general relevance for understanding the processing

strategies employed across multiple sensorimotor systems.

As will be shown next, VO cells also participate in another

fundamental computation: that of distinguishing actively-

generated from passively-applied head movements (see also

review by Angelaki and Cullen 2008).

Actively- versus passively-generated movements:

the concept of reafference

Until recently, the vestibular system had been exclusively

studied in head-restrained animals, by moving the head and
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Fig. 6 A reference frame transformation of canal signals is required

to discriminate tilts and translations in 3D. a Only rotations about an

earth-horizontal axis (but not an earth-vertical axis) reorient the head

relative to gravity (e.g., thick green and red arrows). As a result,

resolution of the tilt/translation ambiguity relies on different combi-

nations of canal signals depending on one’s current head orientation.

For example, when upright (left), roll rotation about the head x-axis

(green arrow) stimulates the otoliths along the y-axis. Thus, when

upright, vertical semicircular canal signals must be combined with

otolith signals to distinguish accelerations due to head tilt from those

due to translation. However, when supine (right), the same roll (x-

axis) rotation in head coordinates does not reorient the head relative to

gravity. Instead yaw (z-axis) rotation (red arrow) stimulates the

otoliths along the y-axis, but this time the rotation is sensed by the

horizontal canals. The canal signals required to resolve the tilt/

translation ambiguity thus depend on head orientation because the

sensory signals are encoded in a head reference frame whereas it is a

spatially-referenced estimate of the earth-horizontal component of

rotation (xEH) that indicates when the head reorients relative to

gravity. Modified and reprinted with permission from Green et al.

(2005). b Schematic representation of the computations to estimate

translation t in 3D (Eq. 1). Head-centered angular velocity estimates,

x (green; e.g., from the canals) are used to compute the rate of change

of the gravity vector relative to the head (dg/dt) as it rotates. For small

amplitude rotations from a given head orientation (e.g., upright) dg/dt
represents the earth-horizontal component of rotation, xEH. Integrat-

ing ($) dg/dt (dashed black line) and taking into account initial head

orientation (e.g., from static otolith signals), yields an updated

estimate of gravitational acceleration, g (orange; g = -$x9g). This

g estimate can be combined with the net acceleration signal, a (red;

from the otoliths) to calculate translational acceleration, t (blue). ‘‘X’’

represents a vector cross-product. ‘‘.’’ denotes a dot product to show

that similar types of nonlinear (multiplicative) computations can also

be used to extract the earth-vertical component of rotation, xEV

(purple). c NU Purkinje cells exhibit robust responses during Tilt–
Translation motion from upright. During this motion, the canals are

stimulated during rotation about an earth-horizontal axis, but the

otolith signal is canceled out. d During rotations about an earth-

vertical axis these cells do not respond regardless of head orientation.

This shows that, for head orientations near upright, NU Purkinje cells

appear to extract the spatially-referenced xEH signal required to

discriminate tilt from translation. Data from Yakusheva et al. (2007)

and replotted with permission from Green and Angelaki (2007)
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body together using an externally applied stimulus. As a

result, our understanding of vestibular processing was

limited to the neuronal encoding of vestibular exafference

(i.e., vestibular signals arising from motions applied by the

external environment). More recently, investigators in the

field have compared neural responses during self-generated

head movements to those during more traditional ‘‘pas-

sive’’ vestibular stimulation (McCrea et al. 1999; Roy and

Cullen 2001). While vestibular afferents reliably encode

head motion during active movements (Cullen and Minor

2002; Sadeghi et al. 2007; Jamali et al. 2009), neural

responses in the VN can be dramatically attenuated (Fig. 7,

compare a and b; see also Boyle et al. 1996; McCrea et al.

1999; Roy and Cullen 2001). What is even more striking is

that these same vestibular neurons continue to selectively

respond to passively applied head motion when a monkey

generates active head-on-body movements (Fig. 7c; Roy

and Cullen 2001; Cullen and Roy 2004). Furthermore,

cognitive signals appear to play no role as neural responses

are not attenuated when the monkey uses a steering wheel

to drive its own passive whole-body rotation (Roy and

Cullen 2001). This selective suppression of self-generated

vestibular activity during active head movements is spe-

cific to the class of VO neurons found in the VN and rFN

regions that are interconnected with the NU (Cullen and

Roy 2004). Notably, these are the same areas involved in

computing inertial motion (i.e., described above) although

at present whether the same neurons that extract such

estimates also show a selective suppression of activity

during active head movements remains to be determined.

These findings are of particular importance for under-

standing how the brain differentiates between sensory inputs

that arise from changes in the world and those that result from

our own voluntary actions. As pointed out by von Helmholtz

(1925), this dilemma is notably experienced during eye

movements: although targets rapidly jump across the retina as

we move our eyes to make saccades, we never see the world

move over our retina. Yet, tapping on the canthus of the eye to

displace the retinal image (as during a saccadic eye move-

ment) results in an illusionary shift of the visual world.

(a) Passive whole-body rotation
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Fig. 7 Neurons in the vestibular nuclei distinguish between sensory

inputs that result from our own actions versus from externally applied

motion. Responses of a VO neuron (gray filled traces) in the VN

during a passive head movements (whole-body rotation); b active

head movements made during gaze shifts; c active head movements

combined with simultaneous passive whole body rotation. Notice that,

while the response of the neuron is attenuated during active head

movements (b), it continues to respond in c to the component of

motion that is passively applied. d Response of another cell to passive

rotation of the body under the head. Like the cell in d, VO cells in the

VN typically showed no response during passive body-under-head

rotation. This implies that the selective attenuation observed during

active head movements in b cannot simply be explained by the

contribution of neck proprioceptive signals. Modified and replotted

with permission from Roy and Cullen (2001)
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The concept of internal models, outlined in previous

sections, is ultimately tied to the dilemma of distinguishing

sensory inputs that arise from external sources from those

that result from self-generated movements. To address this

problem von Holst and Mittelstaedt (1950) proposed the

‘‘Principle of Reafference’’, where a copy of the expected

sensory results of a motor command is subtracted from the

actual sensory signal, thereby eliminating the portion of the

sensory signal resulting from the motor command (termed

‘‘reafference’’) to create a perception of the outside world

(termed ‘‘exafference’’). An internal estimate of the reaf-

ferent signal can be derived by processing a motor effer-

ence copy signal via an internal model of the motor system

to create an internal prediction of the sensory consequences

of that motor command (Wolpert et al. 1995; Decety 1996;

Farrer et al. 2003; Fig. 8a).

Recently, a series of elegant experiments by Cullen and

colleagues (Roy and Cullen 2004) have shown that such a

mechanism underlies the selective elimination of sensiti-

vity to active head movement. In principle, either neck

proprioceptive signals or an efference copy of the neck

motor command might be responsible. However, in the

rhesus monkey, passive activation of neck proprioceptors

did not significantly alter VN neural sensitivities to head

rotation (Fig. 7d; Roy and Cullen 2001, 2004). Similarly,

when head-restrained monkeys were encouraged to attempt

to move their heads, even though they produced the motor

commands to generate head torques comparable to those

generated during large gaze shifts (i.e., when the head

actually does move), this had no effect on neural responses

(Roy and Cullen 2004). Thus, neither neck motor efference

copy nor proprioception cues alone were sufficient to

account for the elimination of neuronal sensitivity to active

as compared to passive head rotation (i.e., compare Fig. 8b

and c). Instead, by experimentally controlling the corre-

spondence between intended and actual head movement

(Fig. 8d; see legend for details), Roy and Cullen (2004)

showed that a ‘‘cancellation signal’’ is generated only when

the activation of neck proprioceptors matches the motor-

generated expectation (Fig. 8a). In agreement with von

Holst and Mittelstaedt’s (1950) original hypothesis, an

internal model of the sensory consequences of active head

motion is used to selectively suppress reafference at the

level of the vestibular nuclei.

The finding that vestibular reafference is suppressed

early in sensory processing has clear analogies with other

sensory systems, most notably the electrosensory system of

the mormyrid fish: cerebellum-like electrosensory lobes

provide the signal that is used to cancel the sensory

response to self-generated stimulation (Bell 1981; Mohr

Fig. 8 An internal model of the sensory consequences of active head

motion is used to selectively suppress reafferent activity in the VN.

a Schematic to explain how vestibular sensitivity to active head

movements could be selectively attenuated. During an active head

movement, an efference copy of the neck motor command signal is

used to compute the expected sensory consequences of that command.

This predicted signal is compared with the actual sensory feedback

from neck proprioceptors. The portion of the two signals which match

is used to compute a ‘‘cancellation’’ signal, which is gated into the

vestibular nuclei to selectively suppress vestibular signals that arise

from self-generated movements. b Activity of a VN neuron (gray
filled trace) during passive whole body rotation, where the inputs to

the system were purely vestibular. c Activity of the same neuron

during active head-on-body movements. In this case, the head

movement activated both vestibular sensors and neck proprioceptive

afferents. An efference copy signal was also theoretically available

because the monkey commanded an active head movement. d During

an active gaze shift, the monkey’s angular head velocity was recorded

online and used to simultaneously passively rotate the animal in the

opposite direction. As a result, his head moved relative to his body but

remained stationary in space. Thus, while vestibular sensory inputs

were greatly reduced, proprioceptive inputs and a putative efference

copy signal were still available. In this case, the neuron’s activity

showed a marked inhibition that corresponded well with the predicted

difference in its sensitivity during passive (b) versus active (c) head

movements. Such an inhibition does not appear on VN cells during

passive movements of the body under the head (i.e., it is not generated

simply by muscle proprioceptive activity; Fig. 7d); it is generated

only when the proprioceptive activity matches that predicted based on

an efference copy of the motor command signal, in agreement with

the scheme in a. Modified and replotted with permission from Roy

and Cullen (2004) and Angelaki and Cullen (2008)
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et al. 2003; Sawtell et al. 2007; Bell et al. 2008). Identi-

fying the neural representations of the cancellation signal

for vestibular reafference promises to be an interesting area

of investigation and the cerebellum is a likely site (see

Cullen and Roy 2004 and Angelaki and Cullen 2008). Next

we describe why vestibular/proprioceptive integration is

also required to compute the motion of the body.

Vestibular contribution to the computation of body

motion

Although vestibular sensory cues are sufficient to estimate

head motion and orientation, the ability to perform daily

tasks, such as estimating our heading direction during

locomotion and executing appropriate postural responses

requires knowledge of the orientation and motion of the

body. In conjunction with proprioceptive signals, vestibular

cues are known to contribute to such body motion esti-

mates (Mergner et al. 1981, 1991; Blouin et al. 2007). To

use vestibular sensory information to help estimate body

motion, the brain is faced with two computational tasks

(Fig. 9). The first (Fig. 9; ‘‘reference frame transforma-

tion’’) arises because our vestibular sensors are fixed in the

head. As a result, the way in which individual sensors are

stimulated as the body moves depends critically on how the

head is statically oriented with respect to the body. For

example, during forward locomotion with the head also

facing forward, the otoliths are stimulated along the axis

between the nose and the back of the head (naso-occipital

axis; Fig. 9, top inset, center panel). However, the same

body motion with the head turned far to the left or to the

Fig. 9 Computations to estimate body motion. Conceptually, this

requires two computational tasks. The first, (left, ‘‘reference frame

transformation’’) transforms head-centered vestibular estimates of

motion into a body-centered reference frame. This is required

because, when the axes of body rotation and/or translation are not

aligned with those of the head, the same body motion results in a

different pattern of stimulation of the vestibular sensors depending on

how the head is oriented with respect to the body (top inset). To

perform such a reference frame transformation, vestibular signals

must be combined non-linearly (multiplicatively) with static propri-

oceptive estimates of head-on-body position, to correctly interpret the

relationship between the pattern of vestibular sensory stimulation and

body motion. The second computational stage (right, ‘‘body motion

computation’’) involves combining vestibular estimates of motion

with dynamic proprioceptive signals to distinguish motion of the body

from motion of the head with respect to the body. A recent study

(Brooks and Cullen 2009) has shown that this second computation

also involves another nonlinear, head-position-dependent transforma-

tion of vestibular signals that is closely matched by a similar

nonlinear head-position-dependent encoding of dynamic propriocep-

tive signals. One potential interpretation of this observation is that the

latter nonlinearity is inherent in the way muscle proprioceptors

encode motion (i.e., they effectively encode body motion in a neck-

muscle-centered reference frame). To ‘‘match’’ the vestibular and

proprioceptive codes up, vestibular signals must be processed by a

similar nonlinearity (‘‘nonlinear processing’’; bottom inset). This

could also be thought of as processing vestibular signals by an

‘‘internal model’’ of the way that neck proprioceptors encode motion.

Note, in addition, that while the schematic implies serial sets of

processing steps, these two computations might actually be performed

simultaneously by the same population of neurons
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right stimulates the otoliths mainly along the axis between

the ears (i.e., interaural axis; Fig. 9, top inset, left and right

panels). The problem is thus similar to that of using canals

signals to estimate head tilt across different head orienta-

tions with respect to gravity. To correctly interpret the

relationship between the pattern of sensory vestibular

activation and actual motion, vestibular signals must

undergo a reference frame transformation. In the case of

estimating body motion the transformation is from a head-

centered to a body-centered reference frame. Such a

computation requires a nonlinear interaction between

dynamic vestibular estimates of head motion and neck

proprioceptive estimates of static head orientation with

respect to the body.

Recently, neurons in the rFN have been identified the

responses of which are consistent with such a transforma-

tion. Specifically, Shaikh et al. (2004) dissociated head and

body motions by examining neural responses in the rFN

and VN when a monkey was translated in different hori-

zontal-plane directions with the head fixed at different

static positions relative to the trunk. Cells which encode

motion in a body-centered reference frame should respond

preferentially to a given direction of body motion inde-

pendently of head orientation. In contrast, if a cell encodes

motion in a head-centered reference frame, its preferred

movement direction with respect to the body should sys-

tematically shift as the head is reoriented to maintain

alignment with a particular axis in head coordinates. Most

neurons in the rostral VN demonstrated responses consis-

tent with this shift expected for a head-centered reference

frame. In contrast, most rFN neurons also showed a shift

but it was through a smaller angle than that of the head. As

a result, their responses typically reflected encoding of

motion in a frame intermediate between either head- or

body-centered.

Similar observations were made by Kleine et al. (2004)

when body and head reference frames were dissociated

during rotation by considering pitch and roll rotations for

different static horizontal-plane head positions relative to

the trunk. Responses were not consistent with encoding of

motion in a head-centered reference frame but rather one

that was closer to body-centered. These observations sug-

gest a potential role for the rFN in transforming vestibular

signals into the appropriate reference frame for estimating

body motion. This is compatible with the fact that the rFN

represents a major target for projections from the anterior

vermis (Voogd and Glickstein 1998) which has been

implicated in vestibular-proprioceptive interactions for

limb and postural control (Manzoni et al. 1997, 1999;

Bruschini et al. 2006).

Importantly, while showing that in the rFN vestibular

signals have been at least partially transformed into body-

centered coordinates is consistent with the hypothesis that

they are being used to estimate body motion, it does not yet

prove that this is what they indeed encode. To estimate

body motion requires a second computational step: motions

of the body must be distinguished from motions of the head

with respect to the body (Fig. 9; ‘‘Body motion computa-

tion’’). In particular, whereas vestibular sensors will be

stimulated in a similar fashion regardless of whether the

head moves alone or the head and body move in tandem, to

estimate body motion the two must be distinguished. The

latter computation requires the integration of vestibular

signals with dynamic neck proprioceptive inputs.

Despite an early convergence of vestibular and propri-

oceptive signals in the vestibular nuclei (Boyle and Pom-

peiano 1981; Kasper et al. 1988; Wilson et al. 1990;

Gdowski and McCrea 2000), an explicit neural correlate

for body (i.e., trunk) motion has been difficult to identify.

For example, during passive movements VN neurons in

rhesus monkeys encode motion of the head rather than the

body (Roy and Cullen 2001, 2004), although there is evi-

dence for a more mixed representation in squirrel monkeys

(Gdowski and McCrea 2000). However, an elegant recent

study by Brooks and Cullen (2009) showed that a neural

correlate for body motion indeed exists in the macaque

rFN. In particular, they showed that approximately half of

rFN neurons responded robustly either to vestibular stim-

ulation alone when the head and body were moved in

tandem (i.e., whole-body rotation; Fig. 10a) or to neck

proprioceptive stimulation alone when the body was pas-

sively moved beneath the head (Fig. 10b). In contrast,

when the head was passively moved relative to the sta-

tionary body, proprioceptive and vestibular signals com-

bined to cancel one another out (Fig. 10c). Thus, these

neurons specifically encoded body motion. Importantly, the

authors also showed that neural sensitivities to neck pro-

prioceptive stimulation during body-under-head rotation

varied as a function of static head orientation with respect

to the body (Fig. 10d). This modulation in sensitivity was

closely matched by similar head-position-dependent chan-

ges in sensitivity to vestibular stimulation during whole-

body rotation (Fig. 10e). As a result, it was shown that

vestibular and proprioceptive signals are not simply sum-

med linearly to estimate body motion. Rather, the brain

takes into account the specific nonlinear processing of

vestibular signals required to match them to proprioceptive

signals across head positions and compute accurate esti-

mates of body motion (Fig. 10f).

This latter observation, (i.e., a dependence of yaw ves-

tibular responses on yaw static head-re-body position) is of

particular note because in the Brooks and Cullen (2009)

study both the head and the body were always moved about

a common axis (i.e., body/head yaw axis). This experi-

mental manipulation differs fundamentally from the ref-

erence frame studies of Shaikh et al. (2004) and Kleine
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et al. (2004), where the direction of motion was system-

atically varied and spatial tuning curves were constructed

at different static head positions with respect to the body

(i.e., thereby dissociating head and body reference frames;

first computational step in Fig. 9, top inset). Instead, by

considering body and head motions under conditions where

the head/body axes of rotation were always coincident, the

Brooks and Cullen study unmasked an additional nonlinear

processing (i.e., the head-position-dependent processing

within the second computational step in Fig. 9; see bottom

inset).

At present, the reason for this second non-linear com-

putation step in estimating body motion remains unknown.

Indeed if both vestibular and proprioceptive inputs pro-

vided head-position-independent estimates of rotation,

such nonlinear processing would not be required to

compute body motion when the head and body are rotated

about a common axis. There is no experimental evidence to

suggest that the way semicircular canal afferents encode

head motion depends on head orientation with respect to

the body. Thus, it is logical to speculate that the nonlinear

processing in the second computational step arises because

of a nonlinear proprioceptive encoding of body motion.

This might be a result of changes in the relative lengths of

different neck muscles as the head is reoriented relative to

the body. Consequently, to distinguish head from body

motion, vestibular signals also need to be processed to

encode motion in the same head-orientation-dependent

way as neck proprioceptors.

While, at present, this interpretation remains speculative

it can again be related to the concept of internal models.

Specifically, to combine multisensory signals that encode

Fig. 10 Evidence for coding of

body motion in the rFN.

Responses of a body-motion-

encoding rFN neuron during

a passive whole-body rotation

that stimulated the semicircular

canals, b passive body-under-

head rotation that stimulated

neck proprioceptors, and

c passive head-on-body rotation

that stimulated both the canals

and neck proprioceptors. Notice

that the cell exhibited a robust

response whenever the body

was moving (a, b) regardless of

which sensors were stimulated,

but did not respond during head-

on-body rotation (c), illustrating

that vestibular and

proprioceptive signals combine

appropriately to distinguish

body motion. d Another

example cell showing that the

response to neck proprioceptive

signals during body-under-head

rotation depended on static head

orientation with respect to the

body. e The same cell also

demonstrated a similar

dependence of vestibular

responses on head orientation

during whole-body rotation.

f Comparison of the average

(across cells) dependence of

vestibular and proprioceptive

responses on head-on-body

position. Curves were computed

by aligning the response peak

for individual cells on zero

before averaging. H head,

B body. Modified and

replotted with permission from

Brooks and Cullen (2009)
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similar information in different ways, the brain must

effectively implement the computations necessary to

‘‘match the codes up’’. In the case of body-motion-encod-

ing rFN cells, this might be accomplished by processing

vestibular signals using an internal model of the way neck

proprioceptors encode body motion (Fig. 9; bottom inset).

This internal model might also be thought of as imple-

menting a further transformation of body-centered vestib-

ular motion estimates into a neck muscle-centered

reference frame.

More generally, when the axes of body and head motion

are different, a head-to-body (or muscle)-centered refer-

ence frame transformation of vestibular signals is required

to match vestibular and proprioceptive motion codes before

combining the two to estimate body motion (Fig. 9). Future

work will be required to establish whether the neurons that

show evidence for a body-centered representation of ves-

tibular signals are the same neurons that encode body

motion and whether in effect the two sets of computations

occur simultaneously within a common population of

neurons (i.e., as opposed to the distinct stages suggested in

Fig. 9). Again, the cerebellar cortex (either anterior vermis

or NU) represents a likely site. Furthermore, because at

least some rFN neurons encode inertial self-motion (i.e.,

they encode translation as opposed to tilt; Angelaki et al.

2004) and distinguish passive from active movements

(Brooks and Cullen 2007), it will be important to address

the extent to which these populations overlap with those

encoding body motion. Ultimately such investigations

promise to shed new insights into how multisensory signals

are integrated and processed by the CNS to create consis-

tent motion representations for different behavioral and

perceptual purposes.

Discussion

A fundamental goal of systems neuroscience is to elucidate

the strategies by which sensory signals are transformed into

central representations that give rise to behavior, and how

behavior in turn influences the interpretation of sensory

information. Over the years, the vestibular system has

served as an excellent model framework for investigating

the neural correlates for such transformations. Among the

earliest theoretical concepts promoted by studies of the

vestibular system was the need for processing of sensory

signals by an internal model of the dynamics of the motor

effector—the eye plant. Since that time, studies of the

vestibular system have continued to provide new insights

into increasingly more complex, and often nonlinear,

computations involved in combining multisensory signals

to create different motion representations that may serve a

variety of motor and perceptual purposes. Here, we have

summarized recent advances in elucidating the neural

correlates for four computational problems: the sensori-

motor transformations for reflex generation, the resolution

of a sensory ambiguity for inertial motion estimation, the

ability to distinguish active from passive movements, and

the integration of vestibular and proprioceptive signals for

body motion estimation. Each relates to the concept of the

‘‘internal model’’, which has become popular in recent

years as a means of describing particular classes of neural

computations (e.g., representation of the dynamics of a

sensor or effector) common to multiple sensorimotor sys-

tems. Understanding whether, how and where such models

are implemented is thus of great importance for under-

standing sensorimotor processing and the vestibular system

has provided an excellent experimental model.

Perhaps the most widely-accepted use of the ‘‘internal

model’’ concept is in motor control: (e.g., complementary

forward and inverse models of the sensors and motor

actuators; Wolpert and Kawato 1998). Implicit in these

theories are the notions that: (1) motor commands are

computed by processing sensory or behavioral goal-direc-

ted information via an inverse model of the effector to be

controlled; (2) a common inverse model should be shared

by all sensorimotor systems that drive the same effector;

(3) there should exist populations of neurons at the output

of such a model that encode an efference copy of the motor

command; and (4) the efference copy should be conveyed

to a forward model of the effector to generate a prediction

of the consequences of that motor command, a signal that

is critical for online refinement and updating of the motor

command.

These concepts, which have been particularly influential

in the field of limb control, have nonetheless remained

mostly conceptual, largely due to the difficulty in identi-

fying neural correlates. As reviewed here, support for such

an organization and indeed direct neurophysiological cor-

relates for many of these general concepts have been pro-

vided by studying the sensorimotor processing in the

vestibular system. Recent studies have further emphasized

that, regardless of the sensory drive, particular groups of

neurons encode consistent information about the current or

predicted state of the effector. Importantly, dedicated

populations of neurons have been shown to explicitly

encode an efference copy of the oculomotor command

(Green et al. 2007), a concept that in other sensorimotor

systems has been proposed in computational models but

remained largely unconfirmed at the neurophysiological

level (but also see Sommer and Wurtz 2002, 2008). Fur-

thermore, distinct populations of cells known to receive

projections from the cerebellar flocculus carry signals more

closely kinematically related to the actual eye movement

than the motor command (Ghasia et al. 2008), thus pro-

viding preliminary evidence for a forward model in the
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cerebellum. The explicit existence of such a forward eye

plant model in the cerebellum remains hypothetical at

present and provides an excellent direction for future work.

Support for the implementation of internal models as a

general theoretical concept has also been provided by

several recent studies characterizing the properties of a

particularly interesting class of brainstem–cerebellar ves-

tibular neurons, the activity of which is not correlated with

eye movements (VO cells). Among the important compu-

tations that they perform is to distinguish between sensory

signals that result from our own actions (i.e., those that

arise from self-generated behaviors, such as active volun-

tary movements) versus those arising from changes in the

external world (e.g., passive perturbations applied by the

environment). Evidence has been provided that the com-

putations involve processing efference copies of neck

motor commands by a forward model (this time of the

‘‘neck plant’’), the output of which reflects the expected

sensory consequences of those commands, and comparing

them with actual sensory feedback from neck propriocep-

tors. When the prediction matches the sensory input, a

signal appropriate to cancel vestibular reafference is gen-

erated (Cullen and Roy 2004; Roy and Cullen 2004). While

the neural correlates for the proposed forward model and

source of the ‘‘cancellation’’ signal remain to be explicitly

identified, these observations provide strong neurophysio-

logical support for well-established theoretical notions of

sensorimotor system organization. These will undoubtedly

help to guide future research in other areas, such as limb

control where the more complicated multijoint nature of

the plant itself and its varied interactions with the envi-

ronment (e.g., support of different loads and use of

different tools) introduce additional complexities in eluci-

dating basic organizational principles and their neural

correlates.

While internal models of the physical characteristics of

a motor plant (or sensorimotor process) have been partic-

ularly influential in motor control theory, recent studies of

the vestibular system have also emphasized the need for

internal models to combine and transform multisensory

signals into a meaningful information about our interaction

with the environment that can ultimately be used for both

motor and perceptual purposes. One such example

reviewed here is the implementation of an internal model

of the computations to resolve the ‘‘tilt/translation’’ ambi-

guity that arises in interpreting ambiguous sensory signals

from otolith afferents (Angelaki et al. 2004; Green et al.

2005).

Similar considerations apply to the problem of distin-

guishing body and head motion. Whereas either vestibular

or neck proprioceptive signals alone provide ambiguous

information about whether the head, body or both are in

motion, recent studies have shown that this problem can be

resolved by combining vestibular and neck proprioceptive

signals in a very specific fashion (Brooks and Cullen 2009;

Kleine et al. 2004; Shaikh et al. 2004). A likely, although

speculative, interpretation of recent findings is that to

ensure that vestibular and proprioceptive signals combine

correctly (i.e., the signals match up), vestibular signals

must first be processed by an internal model of the non-

linear way that neck proprioceptors encode information

about body motion with respect to the head.

In summary, studies of the vestibular system have

played an influential and important role not only in iden-

tifying what transformations need to be performed to solve

specific problems, but also in explicitly providing neuro-

physiological evidence for the necessary computations. In

so doing, these studies have provided support for general

concepts of sensorimotor organization (e.g., implementa-

tion of forward/inverse models, concept of reafference, and

reference frame transformations) that are relevant for all

sensorimotor systems. Importantly, the solid neurophysio-

logical foundation for such concepts provides unique

opportunities to further investigate critical details regarding

strategies for their implementation and use. For example,

what are the specific roles of particular brain areas (e.g.,

cerebellum) in implementing aspects of the required

computations (e.g., forward model representations, non-

linear context-dependent processing)? How are internal

model representations learned and modified both over the

long-term and from moment-to-moment depending on

behavioral context? Theories of motor skill learning in the

limb control system suggest that the learning process

involves changes within neural populations that compute

inverse and/or forward models of the motor effector and

the environment (e.g., a tool) with which it interacts

(Shadmehr 2004). Yet, because the neural correlates for

such internal models remain poorly established, it has been

difficult to provide explicit neural evidence for such theo-

ries and to confirm which models are modified under a

particular set of conditions (e.g., forward and/or inverse

models; model of the effector vs. representation of its

interaction with a particular tool; Wolpert and Kawato

1998; Haruno et al. 2001; Cothros et al. 2006; Kluzik et al.

2008; Wagner and Smith 2008; but see Li et al. 2001;

Padoa-Schioppa et al. 2002). In contrast, because signifi-

cant progress has been made in identifying both the neural

correlates for internal models as well as those for motor

learning in the vestibular system, this task now becomes

tangible. Lessons learned by studying the neural processing

of vestibular signals for the control of eye and head

movements are thus likely to provide new insights into

salient strategies for motor skill learning in the more

complicated limb control system.

Similarly, the multisensory integration strategies and

nonlinear context-dependent computations (e.g., that
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depend on head orientation with respect to gravity or the

body) required to resolve problems, such as the tilt/trans-

lation ambiguity or the computation of body motion have

broad relevance to a wide variety of problems ranging from

the sensorimotor processing to implement reference frame

transformations (Salinas and Abbott 1995; Andersen 1997;

Shaikh et al. 2004; Smith and Crawford 2005; Buneo and

Andersen 2006; Batista et al. 2007; Green and Angelaki

2007; Yakusheva et al. 2007; Blohm et al. 2009) to the

integration of multisensory signals to create meaningful

representations of our environment (Driver and Noesselt

2008; Stein and Stanford 2008; Angelaki et al. 2009). The

vestibular system represents a particularly good model

system to study the neural correlates for some of these

more complex computations because of the solid frame-

work, built on the foundations of control system theory, for

understanding much of the basic dynamic processing of

sensory signals. Studies in the vestibular system will thus

undoubtedly continue to provide important new insights

into neural processing and computation in the brain.
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